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Abstract— This paper introduces a new derivation rule by means of which two new stress rates are
defined. Furthermore. the paper compares five stress rates: Jaumann's, Truesdell's. Green-Naghdi's.
Sowerby—Chu's and Durban-Baruch's, for simple shear. Elastic, elastic—perfectly plastic and elastic-
plastic hardening (isotropic. kinematic. and combined) material models are considered. Different
solutions have already been published for these cases. except for Sowerby-Chu and Durban-Baruch
time derivatives. Using the new derivation rule the new rate form of the hyperelastic Doyle-Ericksen
formula is obtained. Taking advantage of the Sowerby—Chu stress rate a new constitutive equation
for hypoelastic material is given.

INTRODUCTION

One important field of research of constitutive equations is the investigation of stress rates.
Different stress rates have becn analysed by many authors. Most of the investigations
included homogencous large deformation problems like purc tension, simple shear (Moss,
1984 ; Sowerby and Chu. 1984 Johnson and Bammann, 1984 Atluri, 1984b; Reed and
Atluri, 1983 Dicnes, 1979 ; Dafalias, 1983 ; Lec et of., 1983 ; Nagtegaal and de Jong, 1982;
Key, 1984, using classical stress rates (Jaumann, Truesdell, Oldroyd, Cotter-Rivlin, Green-
Naghdi) and their modificd versions for the solutions to constitutive equations. The solu-
tions were mostly obtained for simple hypocelastic (Sowerby and Chu, 1984 ; Atluri, 1984b;
Reed and Atluri, 1983 ; Diences, 1979 ; Truesdell, 1955; Key, 1984 ; Reed and Atluri, 1985,
rigid- plastic isotropic (Lee ¢f al., 1983; Nagtegaal and de Jong, 1982), and kincmatic
hardening (Dafalias, 1983 Lee ef af., 19830 Nagtegaal and de Jong, 1982; Reed and
Atluri, 1985 Paulun and Pecherski, 1985), as well as elastic-plastic isotropic and kinematic
hardening (Johnson and Bammann, 1984 ; Atluri, 1984b; Key, 1984) materials. The clastic-
ideally plastic isotropic material was investigated by Moss (1984) using the Prandtl-Reuss
flow rule. Conclusions drawn from the results are detailed in the works of Key (1984),
Atluri (1984b), Nagtegaal and de Jong (1982), Lee et af (1983), aund Dafalias (1983).

The same solutions can be obtained also for the Sowerby-Chu (1984) and Durban-
Baruch (1977) stress rates that have been published in recent years. For analysis of the
results so obtained, these solutions will be compared with existing solutions for stress rates.

The present work contains this comparison for the case of simple shear using elastic,
clastic-perfectly plastic, elastic-plastic isotropic, kinematic, and combined isotropic-kine-
matic hardening models.

In the first part of this paper, the stress rates and their derivation are reviewed. A
unificd formulation of the stress rates and a new stress rate definition are given.

The sccond part contains solutions for simple shear. For the elastic case, the solutions
can be obtained analytically while in the clastic-perfectly plastic case, the relationships lead
to one- or two-dimensional differential equations. For the elastic~plastic hardening material,
the isotropic, kinematic, and combined model can be described by means of a nine-
dimensional differential equation system. Kinematic hardening is taken into considcration
by usc of the Prager model. No approximations are contained in the relationships derived.
The system of differential equations is solved numerically using the fourth-order Runge-
Kutta method. Some conclusions can be drawn from the evaluation of the obtained results
that may contribute to the synthesis of stress rates.

Finally. the constitutive equations are analysed. The new derivation rule is used to
develop a rate form of the Doyle-Ericksen formula and a new constitutive equation for
hypoclastic materials.
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STRESS RATES

The most important stress rates fulfilling the physical objectivity for Cauchy’s stress
tensor t are given in Table 1. Notations used in Table 1 are as follows: (), material time
derivative, L. velocity gradient tensor: L = FF~', where F is the deformation gradient
tensor, D the strain rate of deformation: D = (L +LT). W the spin tensor: W = {(L ~LT),
Q the rate of the rotation tensor: = RR', where R is the orthogonal tensor in polar
decomposition

F=RU=VR (M

of deformation gradient F, U and V are the right and left stretch tensors, ¢ the spin tensor:
Q; = R R]. where R; is the diagonal transformation of stretch tensor V

V = R AR} )
and 4 the diagonal tensor containing the eigenvalues of V.

For the stress rates listed in Table 1 the following definitions are known. The Truesdell
(1955) time derivative, using the Kirchhoff stress tensor

S AL
t=JF(F "tF HFT 3)
where © = Jt, J = det (F), or bricfly, with the second Piola -Kirchholf stress tensor
= e 4
= FSF.

The Jaumann (1911) rate can be produced as the average of the Oldroyd (1950) rate
t=t—-Lt—tL' (5)
and the Cotter-Rivlin (1955), or convected stress rate
t=t+L't+th (6)
as
1% -~
t = i{t+1t). )

The Green-Naghdi (1965), or Green-Mclanis (1967), or Dienes (1979), stress rate can be
written as

) )
t = R(R'tR)R' (8)
Tabie |
Truesdell t=t~Lt—tLT+ttr ()
Jaumann 1= - Wi+ tW
Green -Naghdi, O
Green -Mclnnis, t =t-Qt+1tQ
Dienes
Sowerby-Chu t=t—Qt+18

Durban -Baruch Y= t—(ID+WHAHW - 1D+t te (D)
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or briefly, with Cauchy's rotated tensor T = R'tR
T=RIR". ©)
The definition of the Sowerby—-Chu (1984) time derivative is
= Re(Rg tRE)RT (10)

The Durban-Baruch (1977) (natural) stress rate can be produced as the average of the
Truesdell rate. and of the Jaumann rate of the Kirchhoff stress tensor

N 1 ° IV
t—i(t'{":"f). (ll)

Remark 1. A rather elegant way to derive stress rates is given by Marsden and Hughes
(1983) and Simo and Marsden (1984). Using the Lie derivation, the stress rates described
above can be produced. The Lie derivation on the covariant coordinates of the stress tensor
results in the Cotter-Rivlin rate. The Oldroyd rate can be obtained using the Lie derivation
on the contravariant stress coordinates.

A connection can be established between the Sowerby—Chu and the Green-Naghdi
stress rates. A relation between ¢ and € is given by (Chu, 1986)

Q, = Q+RQR' (12)
where
Q= RR{
and Ry is a diugonal transformation of tensor U
U = RUIR!. (13)
Using eqn (12)
—RQ RTt+tRQ, RT. (14)

The Sowerby-Chu derivative of Cauchy’s rotated stress tensor T, in terms of tensor €,
takes the following shape:

T=T-QT+TQ,. (15)

Using eqn (15)

i = RTR". (16)

Equation (16) is equivalent to eqn (14), because

=RTR" = R(T-Q, T+TQ)R" = RTR" -RQ,_ R'RTRT + RTRTRQ, R”
=T —RORTt+tRQR".

The definitions of stress rates can be illustrated by means of Fig. | showing con-
figurations Cg and Cy resulting from polar decomposition of deformation gradient (1) as
well as configurations C and C,, associated with the diagonal transformation of tensors
Uand V. For example the Truesdell, Oldroyd, and Cotter-Rivlin rates can be produced by
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Fig. 1. Schematic representation of configurations.

the following steps : (i) a transformation of (instantaneous) configuration C, into the (initial)
configuration Cy; (ii) differentiation with respect to time ; (iii) retransformation. The Green-
Naghdi, or Dienes rate and the Sowerby-Chu rate can be derived in a similar way but by
transformation into configuration Cg and C;,, respectively, instead of C,. Configurations
Cy and C,, have not yet been applied for the derivation of stress rates. It can be shown in
the case of configuration Cy that the derivation procedure previously described leads to
loss of physical objectivity, However, configuration Cj; results in objective stress rates by
mcans of the following new derivation rule.

(1) First transform a tensor (stress, strain, cte.) from the spatial configuration C, into
configuration Cy, then transform it into configuration C,,.

(1) Differentiate it with time.

(i) Retransform it in the opposite direction as described in (i).

Using this derivation rule on the contravariant or covariant Cauchy stress tensor t, the
following ncw stress rates are obtained

te = t— Lyt —tL{ (7
ty = t+Lit+thy (18)

where
L =VV '4+VQ. V! (19

Proposition |. The average of stress rates t; and t;: gives the Sowerby~Chu stress rate
t= it +1). (20)

Proof. To accept this, it is enough to prove
Qe = é(LE—'Lg) = (Lg)a 3}

where ( ) denotes the antisymmetric part of eqn (19).
With eqn (12) substituted into eqn (19) for Lg we obtain

Le = VYV "' +VQV ™ +FQF . (22)

The relationships
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L=VV-isvav-! (23)
and
W= Q- {FQF '+FTQF) (24)

found by Sowerby and Chu (1984) and Chu (1986) help to prove eqn (21).
Substituting eqn (23) into eqn (22) we obtain

Le =L+FQF-'. %
The antisymmetric part of egn (25} is
(Le)a = (Da+FRF)y = W FQF 4. 26)
Comparing eqn (24) with eqn (26) it follows that
(Le)a =% O (27

A lumped representation of part of the stress rates is possible using a formula intro-
duced by Hill (1970)

i = t—m(Dt+tD). (28)
Equation (28) yickds the Jaumann rate in the case of m = 0, the Oldroyd rate form = 1,
whilc the Cotter-Rivlin rate for m = — |, When the right-hand side of eqn (28) is completed
with the term ttr (D), the Truesdell rate is obtained for m = 1 while the Durban-Baruch
rate is obtained for m = 1/2,
Another genceralization of stress rates was given by Fressengeas and Molinari (1983).
They used the relationship given by Mandel (1973) for the directional derivative of the
deformation gradient

D
F= F—QDF.
The stress rate was written as
t=t—Qut+t0,

where
Q, =Q—§R(UU‘“‘-~U"”‘U)RT. (29)

Equation (29) gives the Jaumann rate for v = | and the Green-Naghdi rate forv = 0.
Taking the Sowerby-Chu derivative as a starting point and using eqn (12), a new
generalization of the stress rates is possibie:

t = t—(Q+aRQ R+ (2 +aRQ RT).

The above relationship yields the Green-Naghdi rate for @ = 0 and the Sowerby~Chu rate
fora = I.

Investigation of the expressions for stress rates discussed in this work shows that any
of them can be given in the following general form:

t=t—2(At)s (30)
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Table 2
Stress rates A
Truesdell L-!Ttr(D
Oldroyd L
Cotter-Rivlin -LT
Jaumann W
Durban-Baruch D+W-tD
Green-Naghdi Q
New stress rate, eqn (17) Le=VV '+VvQ V!
New stress rate, eqn (18) —Li= -V ViV IQV
Sowerby-Chu Q,

where ( )s denotes the symmetric part. Taking the objectivity condition for & as a starting
point, the transformation rule

A =QAQ"+QQ' (31
can be derived for quantity A, where Q is an arbitrary orthogonal tensor. Hence, a physically

objective stress rate can be produced with any A transformable according to eqn (31).
Quantitics A, associated with the stress rates investigated, are given in Table 2.

COMPARISON OF STRESS RATES IN THE CASE OF SIMPLE SHEAR

Stress rates in simple shear
For simple shear, the motion can be given in the following well-known form :

Xy = 1"| +('(’).“3; Xy = ;"2; Ny = .’Y;. (32)

On the basis of eqns (32), the kinemalic quantities required for the stress rates given in
Table 1 arc

0 1 0 0 1 0
L=¢lo o of: D=5[1 0 o
0 0 0 Lo 0
T 0 1 0] 0 1 0
W=; -1 0 0l: Q@=f-1 0 0
L 0 o ol 0 0 0
0 1 0]
QF=/~} -1 0 of /f=um~'<‘~'); I
-2 2 e +4
L 0 0 ol

Non-zero clements of stress rates for simple shear can be summed up as
fvo= 1 +écity; (33)
[12 =l 46écatys (34)

fry =4 (35)
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Table 3
Stress rates c C:
Truesdell =2 0
Jaumann -1 1
_ 4 4
Green-Naghdi i Y
2 2
Sowerby—Chu e pEaw
Durban-Baruch -1 !
fip =t +3é(caty +citp). (36)

Parameters ¢, and ¢, are included in Table 3.

Elastic solution
For the elastic solution, the simple hypoelastic relation has been used

t=2uD+iltr D (37

where i and 4 are Lamé constants and t is onc of the stress rates.

Except for the Sowerby-Chu and the Durban -Baruch stress rates, exact solutions are
given by Moss (1984), Atluri (1984b), and Dicnes (1979). These solutions, along with
analytical solutions for the two derivatives mentioned above, are given in Table 4.

Elastic-plastic solution

The eclastic -plastic solution is based on the Prandtl ‘Reuss cquation in the case of
combined isotropic-kinematic hardening. Kinematic hardening is assumed according to
the Prager model. The constitutive equation on the basis of Hughes (1984) is

- 3“2 .‘
= D ).l — ey cu : o __' 3 _
. }lH' __ {l .
= — U 1 l _
Table 4
Truesdell L= pets ty =1, =0
lyy=pe
Jaumann ty = =1y = p[l —cos (¢)]

Ly=psin(e); 15, =0

tyy = dpfcos (2p) In (cos i) + f sin (2f8) —sin® fi]
Green-Naghdi 4y = 2pucos (M2 -2 tan (2f) in (cos B) —tan fi}
1y =0, 1= —1y,

g
=2;x[sin ® In (":o‘!()l;;')ﬂ s () - ]

Sowerby-Chu i
ta = -[I[COS (M) In (%(3(5—”()—/_;.‘-)‘1)*'("" () —sin (/1)]

Hhy=0; t:= -1y,

hy==3t,,= Z;t[l —cos (%L)J
Durban-Baruch -
2 (Y3
Iy =—Ell sin (Tt’): ;=0

v
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. uH' H ]
k=f———§: DB _§- _ ’
ﬂk(3u+H’)s D ﬂgk(3ﬂ+H')5-[f(t) f(x)] (40)
where
k={(15:3)
§=s—2 t=t—2

fiy =t—t. f(x)=d—3a

s is the deviatoric stress tensor, « the “back-stress™ tensor, § the parameter determining the
proportion of isotropic and kinematic hardening. and H’ the slope of the “true stress
logarithmic plastic strain curve™ in a uniaxial tension experiment.

Remark 2. 1f in eqn (30) tensor A is skew symmetric then the last terms vanish on the
right-hand side of eqns (38)—(40).

Remark 3. When deriving eqns (38)—(40) the material derivative is used in the con-
sistency condition of the yield surtace. For other stress rates (including Oldroyd and Cotter—
Rivlin derivatives) the objective stress was used in the consistency condition by Atlurn
{1984b). Consequently in the constitutive cquations, eqns {38) -(40), the last terms are
missing. Detailed analysis is given in Szabo (1988).

With constitutive equations, cgns (38)- (40), applicd to simple shear and compared
with cqns (33) -(36). the following differential equation system consisting of nine cquations
is obtained

) T AL i
Iy =¢“["A S+ ;”311’::(-\'11+f22)(('|'*‘"z)J (4n
) ' . A . i
[y =6 —AtpSn—cdint .,ﬂ-"-z’;:(-\'n + e +c) (42)
. Y
[y =¢) —AlS,+ 7“333’1:(3“ +)(e +102) (43)
. S ; A
=206 —Atfy— ey =0t 51“’?:(.\'2{‘i“lz:)(i'u‘*‘('z) (44)
A pr o= B__ - (<
Ay = ¢ Bfn:‘\’n“fnit:‘7“-"u1|:(~“n+f::)(é'x+¢':) (45)
T B -
Ayy = ¢ Bty —cootia— -,l"-"zzflz(ﬁ'n"*' ey +er) (46)
__ B_ -
dyy = ¢| Bty§y;— -,"u~"s,xfxz(-*‘;z +122){es +c2) 47
-, , B. -
i, =¢| Bri,—lew = e — 5}"?:(3'1|+’::)(C'l+t':) (48)

. - Cc - -
k= ﬁ}[Cf; 1 -,!';It:(»gn + 1220y +C:)} (49)
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where

S 2H _ uH’
—k:(3u+H’)‘ ={ ﬂ)k(.’; +H')" —Bk(3p+H’)'

Remark 4. Apparently if ¢, + ¢, = 0-—which holds for stress rates with skew tensor
A—then the last terms in eqns (41)—(49) vanish.

The differential equation system, eqns (41)—(49), is solved numerically, using the classic
fourth-order Runge-Kutta method in the next paragraph. Solutions for the elastic—perfectly
plastic case (A’ = 0) lead to simpler differential equations.

Table 5 shows the equations obtained by Moss (1984) for the Jaumann, Truesdell, and
Green-Naghdi rates. Table 5 also contains the equations for the Sowerby—-Chu and Durban-
Baruch derivatives that have not been published (to the author’s knowledge).

In Table S. auxiliary variable € is defined by

su=kysin@ and s,; =k, cos 0
where &, is the yield point associated with pure shear.

Numerical results

Numerical calculations were made first for the elastic case. Figures 2 and 3 show the
change of dimensionless stresses ¢,/p and ¢/, calculated on the basis of relationships
given in Table 3, as a function of ¢/2.

Results for the elastic-perfectly plastic case are illustrated in Figs 4 and S, the curves
resulting from the numerical solutions of differential equations given in Table S. For the
sake of compatibility with the results of Moss (1984), the dimensionless valucs of deviatoric
stress components are illustrated. A value ky/u = 0.0577, used also by Moss (1984), has
been used in the calculations.

Values of stresses obtained for clastic-isotropic hardening are illustrated in Figs 6 and
7 (f = 1), whilc the change of stress component ¢, in the neighborhood of clastic-plastic
transition is shown magnified in Fig. 8.

Figures 9-11 apply to elastic-plastic kinematic hardening (f = 0).

Table §
do
— = - cos? U-sin 0f % + L
de = \/3 Ao k,
Truesdell
dt,,
W s k, sin 0 cos 0[ - sin 0+ Js(ln + ’{io):l
Jaumann do —1_*~
i | k. sin 0
Green -Naghdi ‘_w 4 I3
& =: +4 ko sin 0
Sowerby-Chu 99 2 _8
de = +4 k; sin 0
0 13 + 5 in? _sin 0 2;44_1,l
de 2J(39)  2/(39) I ky kK,
Durban -Baruch
dry, 5

3 35 . 7 u ¢
=0k 0 osint = ——— i gL
a0 o COS [‘ 73 sin® @ 2709 sin O(ko + kn)]
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Fig. 2. Shear stress vs shear strain: elustic materiul.

Solutions, illustrated in Figs 12 and 13, arc obtained for combined isotropic -kinematic
hardening (# = 0.5), using material propertics g = 80000 MPa, #l'/u = 0.1, ky/u = 0.0577
for the hardening modcls.

Discussion of numerical results
As Figs 2and 3 iltustrate, the Durban Baruch derivative displays oscillating properties
similar to the Jaumann derivative. A compaurison of the Sowerby - Chu and Green-Naghdi
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Fig. 3. Normal stress vs shear strain: clastic material.
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Fig. 4. Shear stress vs shear strain: elastic-perfectly plastic material,

derivatives shows that the Sowerby -Chu rate results in a smaller normal stress therefore
the curve of stress component ¢, which is closer to the lincar characteristic than the Green -
Naghdi rate.

With the calceulations reproduced, the solutions for the clastic perfectly plastic case
(Figs 4 and 5) contain also the results of Moss (1984). Moss was the first to find for the
Truesdell, Green-Naghdi, and Jaumann stress rates that instability occurred in stress
components ¢, in the clastic -plastic transition for the elastic-perfectly plastic case.
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Fig. 5. Normal stress vs shear strain: elastic—perfectly plastic material.
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Fig. 6. Shear stress vs shear strain: elastic-plastic isotropic hardening material.

The Durban-Baruch derivative shows also instability. Least instability is found for the
Sowerby-Chu rate from among the stress rates investigated.

The shear stress is approximately lincar for all five derivatives in the elustic plastic,
isotropic hardening case (Fig. 6). However, a magnified representation of the section of
clastic-plastic transition (Fig. 8) shows slight instability for the derivatives except for the
Sowerby-Chu rate, It can be seen in Fig. 7, illustrating the change of stress r,,, that the
curves for the Durban-Baruch and Truesdell stress rates are very steep.

As has been found by different authors (Nagtegaal and de Jong, 1982; Key, 1984;
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Fig. 7. Normal stress vs shear strain: elastic-plastic isotropic hadening material.
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Fig. 8. Shear stress vs shear strain: elastic-plastic isotropic hardening material (a magnified
representation of the section of the clastic-plastic transition).

Johnson and Bammann, 1984 ; Atluri, 1984b; Dafalias, 1983 ; Lee et al., 1983) the solutions
show an oscillating behaviour for the Jaumann derivative in the case of elastic-plastic,
kinematic hardening, As compared with the Green-Naghdi derivative, the Sowerby-Chu
derivative results in a solution closer to lincar in stress ¢,,. With the section of elastic-plastic
transition in Fig. 9 magnificd, a slight instability can be experienced in the solutions also
in this case, except for the Sowerby-Chu rate. This phenomenon has not been detected by
calculitions made on the basis of a rigid -plastic modcl. Results differing from the solutions
illustrated in the figures are obtained also in approximate calculations where the total strain
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Fig. 9. Shear stress vs shear strain: elastic-plastic kinematic hardening material.
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Fig. 10. Normal stress vs shear strain: elastic-plastic kinematic hardening material.

rate is used instead of the plastic one to produce the rate of the “"back-stress™ tensor (Atluri,
1984b). Very steep curves arc obtained for the Durban -Baruch and Truesdell derivatives
in normal stresses afso in this model, similar to isotropic hardening.

Results obtained for combined hardening appear as the average of solutions associated
with isotropic and kinematic hardening when ff = 0.5 as shown also by a comparison of
Figs 6,9, 12, and 7,10, 13.
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Fig. 11. Shear stress vs shear strain: clastic-plastic kinematic hardening material (@ magnified
representation of the section of the elastic-plastic transition).
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Fig. 12. Shear stress vs shear strain: elastic -plastic combined isotropic-kinematic hardening material.

CONSTITUTIVE RELATIONS

The simple clastic shear was analysed by eqn (37). Many authors showed that the
Jaumann stress rate results in residual stresses for a closed strain path (Kojic and Bathe,
1987 Kleiber, 1986). Lately the application of the Green -Naghdi stress rate has been
preferred instead of that of Jaumann {Flanagan and Taylor, 1987 ; Hughes, 1984 ; Johnson
and Bammann, 1984; Kim and Oden, 1985). But Simo and Pister (1984) pointed out
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that neither the use of Jaumann nor Green—-Naghdi stress rates in eqn (37) gives elastic
characteristics.

It was apparent from the comparison of stress rates that the Sowerby-Chu rate gives
acceptable results (there are no oscillation and instability at the elastic-plastic limit).

For simple elastic shear the following solution was given (Halleux and Donea. 1985):

. i 1
tyy = —t;=2usin (f) In (%g%—)

sin (f) + 1)

cos (f) (30)

ti» =2ucos (f)In <

This solution is given on Figs 2 and 3 for comparison with others. It is also included in the
solution for the Sowerby—Chu stress rate (see row 4 on Table 3). The only differences are
the last two terms which are multiplied by g. This fact indicates that the right-hand side of
eqn (37) must be modified in order to obtain solution (50).

The Doyle—Ericksen formula for hyperelastic materials is (see p. 204 of Marsden and
Hughes (19813))

Y
T =2p, 5 (51
R
where ¥ is the free energy. p, the density in reference configuration Co, and g the spatial

metric tensor.
Proposition 2. Denoting the symmetric part of Ly, by
D = (L) (52)

and using the new derivation rule on both sides of the (spatial) Doyle Ericksen formula
(51) we obtain
oty

‘Et.; = 4/)(, Dng l),._. (53)

Proof. If the new derivation rule is applied to the Doyle-Ericksen formula, then

A2
T, =2 - ./’1:’,1 (54)

Jgdg

1
/

=

As g is given in covariant coordinates (g,,)
g =g+ Lig+ele. (55)
Since ¢ = 0, therefore
g = Lig+gLy = 2(Ly)s = 2Dy (56)
By substituting eqn (56) into eqn (54) we obtain eqn (53). O
Equation (53) is the new rate form of the Doyle-Ericksen formula. . .
The use of logarithmic strain has appeared recently in the constitutive cquations of

elastic and elastic-plastic materials (Bathe ¢t al., 1985 Halleux and Donea, 1983).

Proposition 3. The relation between Dy and logarithmic strain In V is

%
Dy=InV (57)
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where In V is the Sowerby-Chu rate of In V relative to the Eulerian triad

e PR
InV=1In v“"ng InV+inV QE.

Proof. Chu (1986} gives the expression for L as (see eqn (37) of Chu (1986))
%
L=InV4+Q-FQF ' {58)
Substituting eqn (58) into eqn (25) we obtain
o
from which, as eqn (27) holds, thus
.
(Lg)s =In V = Dg. 0O (60)

Equation (53) is analogous with the Lie derivative of eqn (51) given by Simo and
Marsden (1984) and Marsden and Hughes (1983)

. v
t=4p05§5§.0‘ (61)

As the stress T is conjugate to the strain rate D in eqn (61}, T, is conjugate to the logarithmic
strain rate Dy in eqn (53). If these conjugate pairs are used in cqn (37). respectively, the
same solution for simple shear is obtained (first row of Table 4). On the other side eqn (61)
includes the Jaumann rate analogous with

i=Clg.1): Dy 62

where C is the constitutive tensor. [t follows from eqn (62) for simple hypoelastic materials
that

which gives solution (50) for simple shear. Many authors (Hoger, 1987; Atluri, 1984a)
showed that ¢ and In V are conjugate stress and strain measures in the isotropic elastic case.
Atluri (1985) gave the simple hyperelastic relation between ¢ and In V in the form of

r=2uln V+iltr (In V). (64)

Using the Sowerby-Chu derivation on both sides of eqn (64), eqn (63) is obtained. Equation
(63) is the physically objective rate form of eqn (64) on configuration C,.
The solution to the differential equation for simple shear

&
'a'ﬁ%z'é‘fxz = -2 tan (f) (65)

received from eqn (63), is also identical to eqn (50). However, eqns (50) can be obtained
directly from eqn (64).
Equation (63) on configuration C,, is

RItRe = 2uIn V+il tr (In V) (66)

or in another form

$A5 I15:3-7
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RItRg = 2uii '+l tr (A4~ ). 7

Halleux and Doaea (1985) solved eqn (67) in a geometric way and then transformed the
solution on the instantaneous (C,) configuration. This procedure leads to egns (50).

Finally we note that among the stress rates considered in Table 4, only the Truesdell
{first row) and solution (50) satisfy the local universal relation obtained by Wineman and
Gandhi (1984) for isotropic, elastic simple shear

by =1y =€l (68)

CONCLUSIONS

A new derivation rule was introduced. by means of which two objective stress rates
{eqns (17) and (18)) were derived.

As the Jaumann rate is equal to the average of the Oldroyd and Cotter-Rivlin rates,
likewise the Sowerby -Chu rate is the average of the two new stress rates (20).

The new derivation rule was applied to the hyperelastic Doyle-Ericksen formula,
resulting in a new rate form. In this rate form, the new stress rate {17) is conjugate to the
Sowerby Chu derivative of the logarithmic left stretch tensor, in the current state.

Furthermore, the paper compares some stress rates for simple shear. The comparative
investigations showed similarity between the Durban Baruch and Jaumann stress rates on
the one hand. and between the Sowerby Chu and Green  Naghdi stress rates on the other.
It was shown that the different rates result in different behaviour. Usually it is questionable
which rate can be used in a constitutive cquation. It was shown that for simple shear the
Sowerhy Chu rate gives aceeptable results,

Starting from this observation a new constitutive cquation for hypoclastic materials
was given which includes the Sowerby Chu stress rate. The new equation leads to the
known solution for simple shear.
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